×
>
<

Aptitude

Searching in Binary Search tree

Searching in Binary Search tree

Here, in this page we will discuss searching in binary search tree in C. A binary search tree is a tree in which the data in left sub-tree is less than the root and the data in right sub-tree is greater than the root.Given a Binary Search tree and a key, check whether the key is present in the tree or not.

Algorithm : How to search in Binary search Tree ?

  • If tree is empty return.
  • Check whether key is greater or smaller than root.
  • If greater, move to the right subtree. Otherwise move to the left subtree.
  • If Key is found return true.

Code for Searching Binary Search Tree
  
#include <stdio.h>
#include <stdlib.h>

struct node {
  int key;
  struct node *left, *right;
};

// Create a node
struct node *newNode(int item) {
  struct node *temp = (struct node *)malloc(sizeof(struct node));
  temp->key = item;
  temp->left = temp->right = NULL;
  return temp;
}

// Inorder Traversal
void inorder(struct node *root) {
  if (root != NULL) {
    // Traverse left
    inorder(root->left);

    // Traverse root
    printf("%d -> ", root->key);

    // Traverse right
    inorder(root->right);
  }
}

// Insert a node
struct node *insert(struct node *node, int key) {
  // Return a new node if the tree is empty
  if (node == NULL) return newNode(key);

  // Traverse to the right place and insert the node
  if (key < node->key)
    node->left = insert(node->left, key);
  else
    node->right = insert(node->right, key);

  return node;
}

// Find the inorder successor
struct node *minValueNode(struct node *node) {
  struct node *current = node;

  // Find the leftmost leaf
  while (current && current->left != NULL)
    current = current->left;

  return current;
}

// Deleting a node
struct node *deleteNode(struct node *root, int key) {
  // Return if the tree is empty
  if (root == NULL) return root;

  // Find the node to be deleted
  if (key < root->key)
    root->left = deleteNode(root->left, key);
  else if (key > root->key)
    root->right = deleteNode(root->right, key);

  else {
    // If the node is with only one child or no child
    if (root->left == NULL) {
      struct node *temp = root->right;
      free(root);
      return temp;
    } else if (root->right == NULL) {
      struct node *temp = root->left;
      free(root);
      return temp;
    }

    // If the node has two children
    struct node *temp = minValueNode(root->right);

    // Place the inorder successor in position of the node to be deleted
    root->key = temp->key;

    // Delete the inorder successor
    root->right = deleteNode(root->right, temp->key);
  }
  return root;
}

// Driver code
int main() {
  struct node *root = NULL;
  root = insert(root, 8);
  root = insert(root, 32);
  root = insert(root, 11);
  root = insert(root, 64);
  root = insert(root, 7);
  root = insert(root, 14);
  root = insert(root, 14);
  root = insert(root, 6);

  printf("Inorder traversal: ");
  inorder(root);

  printf("\nAfter deleting 7\n");
  root = deleteNode(root, 7);
  printf("Inorder traversal: ");
  inorder(root);
}
  
  
#include <bits/stdc++.h>
using namespace std;


struct node {
  int key;
  struct node *left, *right;
};

// Create a node
struct node *newNode(int item) {
  struct node *temp = (struct node *)malloc(sizeof(struct node));
  temp->key = item;
  temp->left = temp->right = NULL;
  return temp;
}

// Inorder Traversal
void inorder(struct node *root) {
  if (root != NULL) {
    // Traverse left
    inorder(root->left);

    // Traverse root
    cout << root->key << " -> ";

    // Traverse right
    inorder(root->right);
  }
}

// Insert a node
struct node *insert(struct node *node, int key) {
  // Return a new node if the tree is empty
  if (node == NULL) return newNode(key);

  // Traverse to the right place and insert the node
  if (key < node->key)
    node->left = insert(node->left, key);
  else
    node->right = insert(node->right, key);

  return node;
}

// Find the inorder successor
struct node *minValueNode(struct node *node) {
  struct node *current = node;

  // Find the leftmost leaf
  while (current && current->left != NULL)
    current = current->left;

  return current;
}

// Deleting a node
struct node *deleteNode(struct node *root, int key) {
  // Return if the tree is empty
  if (root == NULL) return root;

  // Find the node to be deleted
  if (key < root->key)
    root->left = deleteNode(root->left, key);
  else if (key > root->key)
    root->right = deleteNode(root->right, key);
  else {
    // If the node is with only one child or no child
    if (root->left == NULL) {
      struct node *temp = root->right;
      free(root);
      return temp;
    } else if (root->right == NULL) {
      struct node *temp = root->left;
      free(root);
      return temp;
    }

    // If the node has two children
    struct node *temp = minValueNode(root->right);

    // Place the inorder successor in position of the node to be deleted
    root->key = temp->key;

    // Delete the inorder successor
    root->right = deleteNode(root->right, temp->key);
  }
  return root;
}

// Driver code
int main() {
  struct node *root = NULL;
  root = insert(root, 8);
  root = insert(root, 32);
  root = insert(root, 11);
  root = insert(root, 64);
  root = insert(root, 7);
  root = insert(root, 14);
  root = insert(root, 14);
  root = insert(root, 6);

  cout << "Inorder traversal: ";
  inorder(root);

  cout << "\nAfter deleting 7\n";
  root = deleteNode(root, 7);
  cout << "Inorder traversal: ";
  inorder(root);
}
  
  

class BinarySearchTree {
  class Node {
    int key;
    Node left, right;

    public Node(int item) {
      key = item;
      left = right = null;
    }
  }

  Node root;

  BinarySearchTree() {
    root = null;
  }

  void insert(int key) {
    root = insertKey(root, key);
  }

  // Insert key in the tree
  Node insertKey(Node root, int key) {
    // Return a new node if the tree is empty
    if (root == null) {
      root = new Node(key);
      return root;
    }

    // Traverse to the right place and insert the node
    if (key < root.key)
      root.left = insertKey(root.left, key);
    else if (key > root.key)
      root.right = insertKey(root.right, key);

    return root;
  }

  void inorder() {
    inorderRec(root);
  }

  // Inorder Traversal
  void inorderRec(Node root) {
    if (root != null) {
      inorderRec(root.left);
      System.out.print(root.key + " -> ");
      inorderRec(root.right);
    }
  }

  void deleteKey(int key) {
    root = deleteRec(root, key);
  }

  Node deleteRec(Node root, int key) {
    // Return if the tree is empty
    if (root == null)
      return root;

    // Find the node to be deleted
    if (key < root.key)
      root.left = deleteRec(root.left, key);
    else if (key > root.key)
      root.right = deleteRec(root.right, key);
    else {
      // If the node is with only one child or no child
      if (root.left == null)
        return root.right;
      else if (root.right == null)
        return root.left;

      // If the node has two children
      // Place the inorder successor in position of the node to be deleted
      root.key = minValue(root.right);

      // Delete the inorder successor
      root.right = deleteRec(root.right, root.key);
    }

    return root;
  }

  // Find the inorder successor
  int minValue(Node root) {
    int minv = root.key;
    while (root.left != null) {
      minv = root.left.key;
      root = root.left;
    }
    return minv;
  }

  // Driver Program to test above functions
  public static void main(String[] args) {
    BinarySearchTree tree = new BinarySearchTree();

    tree.insert(8);
    tree.insert(32);
    tree.insert(11);
    tree.insert(64);
    tree.insert(7);
    tree.insert(14);
    tree.insert(14);
    tree.insert(6);

    System.out.print("Inorder traversal: ");
    tree.inorder();

    System.out.println("\nAfter deleting 7");
    tree.deleteKey(7);
    System.out.print("Inorder traversal: ");
    tree.inorder();
  }
}
	

Output : C/C++

	
Inorder traversal: 6 -> 7 -> 8 -> 11 -> 14 -> 14 -> 32 -> 64 -> 
After deleting 7
Inorder traversal: 6 -> 8 -> 11 -> 14 -> 14 -> 32 -> 64 -> 
	

Output : Java

	
Inorder traversal: 6 -> 7 -> 8 -> 11 -> 14 -> 32 -> 64 -> 
After deleting 7
Inorder traversal: 6 -> 8 -> 11 -> 14 -> 32 -> 64 ->