The natural number which cannot be expressed in the form of fraction known as Surds.
For example:$ \sqrt{2}=2^{\frac{1}{2}}$ and the Indices refers to the power to which a number is raised.
Surds: Number which cannot be expressed in the fraction form of two integers is called as surd.
Indices: Indices refers to the power to which a number is raised. For example; 2²
$a^n ⋅ a^m = a^{(m+n)}$
Example:
$2_{3} ⋅ 2_{4} = 2^(3+4) = 2^7 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128$
$a^n ⋅ b^n = (a ⋅ b)^n$
Example:
$3^2 ⋅ 2^2 = (3⋅2)^2 = 36$
$ \frac{a^n}{b^n} = (\frac{a}{b})^n$
Example:
$ \frac{9^3}{3^3} = (\frac{9}{3})^3 = 27$
$(a^n)^m = a^{(n.m)}$
Example:
$(2^3)^2 = 2^{(3.2)} = 26 = 2⋅2⋅2⋅2⋅2⋅2 = 64$
$ a^{n^m} = a^{(n^m)}$
Example:
$2^{3^2} = 2^{(3^2)} = 29 = 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2 = 512$
1. 1. Find the value of $7^{-25} – 7^{-26}$
Options:
A. $6 × 7^{-26}$
B. $6 × 7^{-25}$
C. $6 × 7^{-26}$
D. $7 × 7^{-26}$
Solution:
$7^{-25} – 7^{-26} = \frac{1}{7^{25}} – \frac{1}{7^{26}}$
$\frac{7 – 1}{7^{26}} = 6 × 7^{-26}$
Correct option: A
2. Simplify $(256)^ \frac{3}{4}$
Options:
A. 16
B. 12
C. 256
D. 64
Solution:
$(256)^ \frac{3}{4} = (44)^ \frac{3}{4} = 4^3 = 64$
Correct option: D
3.Find the value of $8^{112} ÷ 8^{110}$
Options:
A. 72
B. 64
C. 81
D. 49
Solution:
We know,
$\frac{a^m}{a^n} = a^(m-n)
1480 = 2 x 2 x 2 × 5 × 37
= 8 ^ {(112 – 110)}
= 8^2 = 64
Correct Option: B
1. If 4x + 1 = 80, then the value of x is
Options:
A. 16
B. 9
C. 25
D. 4
Solution:
$4^x(1 + 4) = 80$
$4^x * 5 = 80$
$4^x = \frac{80}{5}$
$4^x = 16$
x = 2
$x^x = 2^2 = 4$
Correct option: D
2. If $2^a = 3\sqrt{32}$ , then a is equal to:
Options:
A.$\frac{1}{3}$
B. 4
C. $\frac{5}{3}$
D. $\frac{1}{2}$
Solution:
Given value $2^a$
$3\sqrt{32}$
$2^a = (32)^ \frac{1}{3}$
$2^a = (2^5)^ \frac{1}{3}$
$2^a = (2)^ \frac{5}{3}$
$a = \frac{5}{3}$
Correct option: C
3.Let x and y be two positive real numbers such that $xy=1$. The minimum value of x+y is
Options:
A. 1
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{4}$
Solution:
Given $x \times \text{y = 1 and f(x,y) = x + y }$
$f(x) = x+\frac{1}{x}$
$f(x) = 1 = \frac{1}{{x}^2}$
For maxima or minima,
$f'(x) = 0$
$x = ±1 $
$f''(x) = \frac{2}{{x}^3}$
$f''(x) > 0 at x = 1$
$f(1)=2$
So, minimum value of $\text{ x+y is 2 }.$
Correct Option: C